Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1360108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505555

RESUMO

Timely initiation of chromosomal DNA replication in Escherichia coli is achieved by cell cycle-coordinated regulation of the replication origin, oriC, and the replication initiator, ATP-DnaA. Cellular levels of ATP-DnaA increase and peak at the time for initiation at oriC, after which hydrolysis of DnaA-bound ATP causes those to fall, yielding initiation-inactive ADP-DnaA. This hydrolysis is facilitated by the chromosomal locus datA located downstream of the tRNA-Gly (glyV-X-Y) operon, which possesses a cluster of DnaA-binding sequences and a single binding site (IBS) for the DNA bending protein IHF (integration host factor). While IHF binding activates the datA function and is regulated to occur specifically at post-initiation time, the underlying regulatory mechanisms remain obscure. Here, we demonstrate that datA-IHF binding at pre-initiation time is down-regulated depending on the read-through transcription of datA IBS initiated at the glyV-X-Y promoter. During the cell cycle, the level of read-through transcription, but not promoter activity, fluctuated in a manner inversely related to datA-IHF binding. Transcription from the glyV-X-Y promoter was predominantly interrupted at datA IBS by IHF binding. The terminator/attenuator sequence of the glyV-X-Y operon, as well as DnaA binding within datA overall, contributed to attenuation of transcription upstream of datA IBS, preserving the timely fluctuation of read-through transcription. These findings provide a mechanistic insight of tRNA transcription-dependent datA-IHF regulation, in which an unidentified factor is additionally required for the timely datA-IHF dissociation, and support the significance of datA for controlling the cell cycle progression as a connecting hub of tRNA production and replication initiation.

2.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511331

RESUMO

This review summarizes current knowledge about the mechanisms of timely binding and dissociation of two nucleoid proteins, IHF and Fis, which play fundamental roles in the initiation of chromosomal DNA replication in Escherichia coli. Replication is initiated from a unique replication origin called oriC and is tightly regulated so that it occurs only once per cell cycle. The timing of replication initiation at oriC is rigidly controlled by the timely binding of the initiator protein DnaA and IHF to oriC. The first part of this review presents up-to-date knowledge about the timely stabilization of oriC-IHF binding at oriC during replication initiation. Recent advances in our understanding of the genome-wide profile of cell cycle-coordinated IHF binding have revealed the oriC-specific stabilization of IHF binding by ATP-DnaA oligomers at oriC and by an initiation-specific IHF binding consensus sequence at oriC. The second part of this review summarizes the mechanism of the timely regulation of DnaA activity via the chromosomal loci DARS2 (DnaA-reactivating sequence 2) and datA. The timing of replication initiation at oriC is controlled predominantly by the phosphorylated form of the adenosine nucleotide bound to DnaA, i.e., ATP-DnaA, but not ADP-ADP, is competent for initiation. Before initiation, DARS2 increases the level of ATP-DnaA by stimulating the exchange of ADP for ATP on DnaA. This DARS2 function is activated by the site-specific and timely binding of both IHF and Fis within DARS2. After initiation, another chromosomal locus, datA, which inactivates ATP-DnaA by stimulating ATP hydrolysis, is activated by the timely binding of IHF. A recent study has shown that ATP-DnaA oligomers formed at DARS2-Fis binding sites competitively dissociate Fis via negative feedback, whereas IHF regulation at DARS2 and datA still remains to be investigated. This review summarizes the current knowledge about the specific role of IHF and Fis in the regulation of replication initiation and proposes a mechanism for the regulation of timely IHF binding and dissociation at DARS2 and datA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Origem de Replicação , Replicação do DNA , Ciclo Celular , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo
3.
J Biol Chem ; 299(7): 104888, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276959

RESUMO

Initiation of chromosomal replication requires dynamic nucleoprotein complexes. In most eubacteria, the origin oriC contains multiple DnaA box sequences to which the ubiquitous DnaA initiators bind. In Escherichia coli oriC, DnaA boxes sustain construction of higher-order complexes via DnaA-DnaA interactions, promoting the unwinding of the DNA unwinding element (DUE) within oriC and concomitantly binding the single-stranded (ss) DUE to install replication machinery. Despite the significant sequence homologies among DnaA proteins, oriC sequences are highly diverse. The present study investigated the design of oriC (tma-oriC) from Thermotoga maritima, an evolutionarily ancient eubacterium. The minimal tma-oriC sequence includes a DUE and a flanking region containing five DnaA boxes recognized by the cognate DnaA (tmaDnaA). This DUE was comprised of two distinct functional modules, an unwinding module and a tmaDnaA-binding module. Three direct repeats of the trinucleotide TAG within DUE were essential for both unwinding and ssDUE binding by tmaDnaA complexes constructed on the DnaA boxes. Its surrounding AT-rich sequences stimulated only duplex unwinding. Moreover, head-to-tail oligomers of ATP-bound tmaDnaA were constructed within tma-oriC, irrespective of the directions of the DnaA boxes. This binding mode was considered to be induced by flexible swiveling of DnaA domains III and IV, which were responsible for DnaA-DnaA interactions and DnaA box binding, respectively. Phasing of specific tmaDnaA boxes in tma-oriC was also responsible for unwinding. These findings indicate that a ssDUE recruitment mechanism was responsible for unwinding and would enhance understanding of the fundamental molecular nature of the origin sequences present in evolutionarily divergent bacteria.


Assuntos
Proteínas de Ligação a DNA , Origem de Replicação , Thermotoga maritima , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
4.
Nucleic Acids Res ; 51(12): 6286-6306, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178000

RESUMO

The Escherichia coli replication origin oriC contains the initiator ATP-DnaA-Oligomerization Region (DOR) and its flanking duplex unwinding element (DUE). In the Left-DOR subregion, ATP-DnaA forms a pentamer by binding to R1, R5M and three other DnaA boxes. The DNA-bending protein IHF binds sequence-specifically to the interspace between R1 and R5M boxes, promoting DUE unwinding, which is sustained predominantly by binding of R1/R5M-bound DnaAs to the single-stranded DUE (ssDUE). The present study describes DUE unwinding mechanisms promoted by DnaA and IHF-structural homolog HU, a ubiquitous protein in eubacterial species that binds DNA sequence-non-specifically, preferring bent DNA. Similar to IHF, HU promoted DUE unwinding dependent on ssDUE binding of R1/R5M-bound DnaAs. Unlike IHF, HU strictly required R1/R5M-bound DnaAs and interactions between the two DnaAs. Notably, HU site-specifically bound the R1-R5M interspace in a manner stimulated by ATP-DnaA and ssDUE. These findings suggest a model that interactions between the two DnaAs trigger DNA bending within the R1/R5M-interspace and initial DUE unwinding, which promotes site-specific HU binding that stabilizes the overall complex and DUE unwinding. Moreover, HU site-specifically bound the replication origin of the ancestral bacterium Thermotoga maritima depending on the cognate ATP-DnaA. The ssDUE recruitment mechanism could be evolutionarily conserved in eubacteria.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Origem de Replicação , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo
5.
Nucleic Acids Res ; 50(22): 12896-12912, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484102

RESUMO

The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Cromossomos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Replicação do DNA/genética , DNA de Cadeia Simples/metabolismo , DnaB Helicases/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
6.
J Biol Chem ; 298(6): 102051, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35598828

RESUMO

Unwinding of the replication origin and loading of DNA helicases underlie the initiation of chromosomal replication. In Escherichia coli, the minimal origin oriC contains a duplex unwinding element (DUE) region and three (Left, Middle, and Right) regions that bind the initiator protein DnaA. The Left/Right regions bear a set of DnaA-binding sequences, constituting the Left/Right-DnaA subcomplexes, while the Middle region has a single DnaA-binding site, which stimulates formation of the Left/Right-DnaA subcomplexes. In addition, a DUE-flanking AT-cluster element (TATTAAAAAGAA) is located just outside of the minimal oriC region. The Left-DnaA subcomplex promotes unwinding of the flanking DUE exposing TT[A/G]T(T) sequences that then bind to the Left-DnaA subcomplex, stabilizing the unwound state required for DnaB helicase loading. However, the role of the Right-DnaA subcomplex is largely unclear. Here, we show that DUE unwinding by both the Left/Right-DnaA subcomplexes, but not the Left-DnaA subcomplex only, was stimulated by a DUE-terminal subregion flanking the AT-cluster. Consistently, we found the Right-DnaA subcomplex-bound single-stranded DUE and AT-cluster regions. In addition, the Left/Right-DnaA subcomplexes bound DnaB helicase independently. For only the Left-DnaA subcomplex, we show the AT-cluster was crucial for DnaB loading. The role of unwound DNA binding of the Right-DnaA subcomplex was further supported by in vivo data. Taken together, we propose a model in which the Right-DnaA subcomplex dynamically interacts with the unwound DUE, assisting in DUE unwinding and efficient loading of DnaB helicases, while in the absence of the Right-DnaA subcomplex, the AT-cluster assists in those processes, supporting robustness of replication initiation.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , DnaB Helicases , Complexo de Reconhecimento de Origem , Origem de Replicação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases/genética , DnaB Helicases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo de Reconhecimento de Origem/genética
7.
Nucleic Acids Res ; 49(22): 12820-12835, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871419

RESUMO

In Escherichia coli, the replication initiator DnaA oscillates between an ATP- and an ADP-bound state in a cell cycle-dependent manner, supporting regulation for chromosome replication. ATP-DnaA cooperatively assembles on the replication origin using clusters of low-affinity DnaA-binding sites. After initiation, DnaA-bound ATP is hydrolyzed, producing initiation-inactive ADP-DnaA. For the next round of initiation, ADP-DnaA binds to the chromosomal locus DARS2, which promotes the release of ADP, yielding the apo-DnaA to regain the initiation activity through ATP binding. This DnaA reactivation by DARS2 depends on site-specific binding of IHF (integration host factor) and Fis proteins and IHF binding to DARS2 occurs specifically during pre-initiation. Here, we reveal that Fis binds to an essential region in DARS2 specifically during pre-initiation. Further analyses demonstrate that ATP-DnaA, but not ADP-DnaA, oligomerizes on a cluster of low-affinity DnaA-binding sites overlapping the Fis-binding region, which competitively inhibits Fis binding and hence the DARS2 activity. DiaA (DnaA initiator-associating protein) stimulating ATP-DnaA assembly enhances the dissociation of Fis. These observations lead to a negative feedback model where the activity of DARS2 is repressed around the time of initiation by the elevated ATP-DnaA level and is stimulated following initiation when the ATP-DnaA level is reduced.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ciclo Celular/genética , Cromossomos Bacterianos/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Retroalimentação Fisiológica , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Modelos Genéticos , Ligação Proteica , Origem de Replicação/genética , Homologia de Sequência do Ácido Nucleico
8.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500340

RESUMO

Regulated organization of the chromosome is essential for faithful propagation of genetic information. In the model bacterium Caulobacter crescentus, the replication terminus of the chromosome is spatially arranged in close proximity to the cytokinetic Z-ring during the cell cycle. Although the Z-ring-associated proteins ZapA and ZauP interact with the terminus recognition protein ZapT, the molecular functions of the complex that physically links the terminus and the Z-ring remain obscure. In this study, we found that the physical linkage helps to organize the terminus DNA into a clustered structure. Neither ZapA nor ZauP was required for ZapT binding to the terminus DNA, but clustering of the ZapT-DNA complexes over the Z-ring was severely compromised in cells lacking ZapA or ZauP. Biochemical characterization revealed that ZapT, ZauP, and ZapA interacted directly to form a highly ordered ternary complex. Moreover, multiple ZapT molecules were sequestered by each ZauP oligomer. Investigation of the functional structure of ZapT revealed that the C terminus of ZapT specifically interacted with ZauP and was essential for timely positioning of the Z-ring in vivo Based on these findings, we propose that ZauP-dependent oligomerization of ZapT-DNA complexes plays a distinct role in organizing the replication terminus and the Z-ring. The C termini of ZapT homologs share similar chemical properties, implying a common mechanism for the physical linkage between the terminus and the Z-ring in bacteria.IMPORTANCE Rapidly growing bacteria experience dynamic changes in chromosome architecture during chromosome replication and segregation, reflecting the importance of mechanisms that organize the chromosome globally and locally within a cell to maintain faithful transmission of genetic material across generations. During cell division in the model bacterium Caulobacter crescentus, the replication terminus of the chromosome is physically linked to the cytokinetic Z-ring at midcell. However, the functions of this physical linkage are not fully understood. We adopted biochemical and cell-biological techniques to characterize the linkage, including the terminus-binding protein ZapT and the Z-ring-associated protein ZauP. We obtained evidence that the Z-ring organizes the chromosome terminus into a compact structure at midcell via specific interaction between ZapT and ZauP oligomers. Because these proteins are conserved in diverse Gram-negative bacteria, our findings highlight a novel and conserved role for the linker complex in regulated organization of the chromosome terminus.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Sanguíneas/genética , Caulobacter crescentus/genética , Cromossomos Bacterianos/genética , Replicação do DNA/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo
9.
J Biol Chem ; 295(32): 11131-11143, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540966

RESUMO

The DNA replication protein DnaA in Escherichia coli constructs higher-order complexes on the origin, oriC, to unwind this region. DnaB helicase is loaded onto unwound oriC via interactions with the DnaC loader and the DnaA complex. The DnaB-DnaC complex is recruited to the DnaA complex via stable binding of DnaB to DnaA domain I. The DnaB-DnaC complex is then directed to unwound oriC via a weak interaction between DnaB and DnaA domain III. Previously, we showed that Phe46 in DnaA domain I binds to DnaB. Here, we searched for the DnaA domain I-binding site in DnaB. The DnaB L160A variant was impaired in binding to DnaA complex on oriC but retained its DnaC-binding and helicase activities. DnaC binding moderately stimulated DnaA binding of DnaB L160A, and loading of DnaB L160A onto oriC was consistently and moderately inhibited. In a helicase assay with partly single-stranded DNA bearing a DnaA-binding site, DnaA stimulated DnaB loading, which was strongly inhibited in DnaB L160A even in the presence of DnaC. DnaB L160A was functionally impaired in vivo On the basis of these findings, we propose that DnaB Leu160 interacts with DnaA domain I Phe46 DnaB Leu160 is exposed on the lateral surface of the N-terminal domain, which can explain unobstructed interactions of DnaA domain I-bound DnaB with DnaC, DnaG primase, and DnaA domain III. We propose a probable structure for the DnaA-DnaB-DnaC complex, which could be relevant to the process of DnaB loading onto oriC.


Assuntos
DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Origem de Replicação , Sequência de Aminoácidos , Sítios de Ligação , DnaB Helicases/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Domínios Proteicos
10.
mBio ; 11(2)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345642

RESUMO

Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus , Cromossomos Bacterianos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/genética , Caulobacter crescentus/citologia , Caulobacter crescentus/genética , Caulobacter crescentus/fisiologia , Divisão Celular/genética , Segregação de Cromossomos , Proteínas do Citoesqueleto/genética , Replicação do DNA/genética , DNA Bacteriano , Origem de Replicação
11.
Genes Genet Syst ; 94(5): 183-196, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31495806

RESUMO

Chromosome replication is a fundamental process in all domains of life. To accurately transmit genetic material to offspring, the initiation of chromosome replication is tightly regulated to ensure that it occurs only once in each cell division cycle. In the model bacterium Caulobacter crescentus, the CtrA response regulator inhibits the origin of replication at the pre-replication stage. Inactivation of CtrA permits the universal DnaA initiator to form an initiation complex at the origin, leading to replication initiation. Subsequently, the initiation complex is inactivated to prevent extra initiation. Whereas DNA replication occurs periodically in exponentially growing cells, replication initiation is blocked under various stress conditions to halt cell cycle progression until the normal condition is restored or the cells adapt to the stress. Thus, regulating the initiation complex plays an important role in not only driving cell cycle progression, but also maintaining cell integrity under stress. Multiple regulatory signaling pathways controlling CtrA and DnaA have been identified and recent studies have advanced our knowledge of the underlying mechanistic and molecular processes. This review focuses on how bacterial cells control replication initiation, highlighting the latest findings that have emerged from studies in C. crescentus.


Assuntos
Caulobacter crescentus/fisiologia , Ciclo Celular/fisiologia , Cromossomos Bacterianos , Proteínas de Bactérias/fisiologia , Caulobacter crescentus/genética , Ciclo Celular/genética , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia
12.
Nucleic Acids Res ; 47(21): 11209-11224, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31535134

RESUMO

ATP-DnaA is temporally increased to initiate replication during the cell cycle. Two chromosomal loci, DARS (DnaA-reactivating sequences) 1 and 2, promote ATP-DnaA production by nucleotide exchange of ADP-DnaA for timely initiation. ADP-DnaA complexes are constructed on DARS1 and DARS2, bearing a cluster of three DnaA-binding sequences (DnaA boxes I-III), promoting ADP dissociation. Although DnaA has an AAA+ domain, which ordinarily directs construction of oligomers in a head-to-tail manner, DnaA boxes I and II are oriented oppositely. In this study, we constructed a structural model of a head-to-head dimer of DnaA AAA+ domains, and analyzed residues residing on the interface of the model dimer. Gln208 was specifically required for DARS-dependent ADP dissociation in vitro, and in vivo analysis yielded consistent results. Additionally, ADP release from DnaA protomers bound to DnaA boxes I and II was dependent on Gln208 of the DnaA protomers, and DnaA box III-bound DnaA did not release ADP nor require Gln208 for ADP dissociation by DARS-DnaA complexes. Based on these and other findings, we propose a model for DARS-DnaA complex dynamics during ADP dissociation, and provide novel insight into the regulatory mechanisms of DnaA and the interaction modes of AAA+ domains.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Multimerização Proteica/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complexo de Reconhecimento de Origem/química , Ligação Proteica , Estrutura Quaternária de Proteína
13.
Front Microbiol ; 10: 72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792700

RESUMO

The Escherichia coli CrfC protein is an important regulator of nucleoid positioning and equipartition. Previously we revealed that CrfC homo-oligomers bind the clamp, a DNA-binding subunit of the DNA polymerase III holoenzyme, promoting colocalization of the sister replication forks, which ensures the nucleoid equipartition. In addition, CrfC localizes at the cell pole-proximal loci via an unknown mechanism. Here, we demonstrate that CrfC localizes to the distinct subnucleoid structures termed nucleoid poles (the cell pole-proximal nucleoid-edges) even in elongated cells as well as in wild-type cells. Systematic analysis of the nucleoid-associated proteins (NAPs) and related proteins revealed that HU, the most abundant NAP, and SlmA, the nucleoid occlusion factor regulating the localization of cell division apparatus, promote the specific localization of CrfC foci. When the replication initiator DnaA was inactivated, SlmA and HU were required for formation of CrfC foci. In contrast, when the replication initiation was inhibited with a specific mutant of the helicase-loader DnaC, CrfC foci were sustained independently of SlmA and HU. H-NS, which forms clusters on AT-rich DNA regions, promotes formation of CrfC foci as well as transcriptional regulation of crfC. In addition, MukB, the chromosomal structure mainetanice protein, and SeqA, a hemimethylated nascent DNA region-binding protein, moderately stimulated formation of CrfC foci. However, IHF, a structural homolog of HU, MatP, the replication terminus-binding protein, Dps, a stress-response factor, and FtsZ, an SlmA-interacting factor in cell division apparatus, little or only slightly affected CrfC foci formation and localization. Taken together, these findings suggest a novel and unique mechanism that CrfC localizes to the nucleoid poles in two steps, assembly and recruitment, dependent upon HU, MukB, SeqA, and SlmA, which is stimulated directly or indirectly by H-NS and DnaA. These factors might concordantly affect specific nucleoid substructures. Also, these nucleoid dynamics might be significant in the role for CrfC in chromosome partition.

14.
Front Microbiol ; 9: 2017, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233515

RESUMO

Chromosomal replication initiation requires dynamic mechanisms in higher-order nucleoprotein complexes that are constructed at the origin of replication. In Escherichia coli, DnaA molecules construct functional oligomers at the origin oriC, enabling localized unwinding of oriC and stable binding of DnaB helicases via multiple domain I molecules of oriC-bound DnaA. DnaA-bound DnaB helicases are then loaded onto the unwound region of oriC for construction of a pair of replisomes for bidirectional replication. However, mechanisms of DnaB loading to the unwound oriC remain largely elusive. In this study, we determined that His136 of DnaA domain III has an important role in loading of DnaB helicases onto the unwound oriC. DnaA H136A mutant protein was impaired in replication initiation in vivo, and in DnaB loading to the unwound oriC in vitro, whereas the protein fully sustained activities for oriC unwinding and DnaA domain I-dependent stable binding between DnaA and DnaB. Functional and structural analyses supported the idea that transient weak interactions between DnaB helicase and DnaA His136 within specific protomers of DnaA oligomers direct DnaB to a region in close proximity to single stranded DNA at unwound oriC bound to DnaA domain III of the DnaA oligomer. The aromatic moiety of His136 is basically conserved at corresponding residues of eubacterial DnaA orthologs, implying that the guidance function of DnaB is common to all eubacterial species.

15.
Sci Adv ; 2(9): e1600823, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27652341

RESUMO

Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.


Assuntos
GMP Cíclico/química , Histidina Quinase/química , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Difosfato de Adenosina/química , Domínio Catalítico , Caulobacter crescentus/enzimologia , Estrutura Terciária de Proteína , Transdução de Sinais
16.
J Bacteriol ; 198(3): 448-62, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26553851

RESUMO

UNLABELLED: Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE: Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial separation of individual c-di-GMP signaling units was postulated. However, since most cyclases and phosphodiesterases harbor N-terminal signal input domains, it is equally possible that most of these enzymes lack their activating signals under laboratory conditions, thereby simulating signaling specificity on a genetic level. We demonstrate that a subset of E. coli phosphodiesterases can be activated genetically to affect the global c-di-GMP pool and thus influence different c-di-GMP-dependent processes. Although this does not exclude spatial confinement of individual phosphodiesterases, this study emphasizes the importance of environmental signals for activation of phosphodiesterases.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Movimento , Diester Fosfórico Hidrolases/genética , Gravação em Vídeo
17.
Mol Microbiol ; 94(3): 580-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171231

RESUMO

When Caulobacter crescentus enters S-phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co-option as c-di-GMP effector protein. While the C-terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N-terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N-terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c-di-GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S-phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/fisiologia , Pontos de Checagem do Ciclo Celular , GMP Cíclico/análogos & derivados , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional
18.
Genes Dev ; 27(18): 2049-62, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24065770

RESUMO

Eukaryotic morphogenesis is seeded with the establishment and subsequent amplification of polarity cues at key times during the cell cycle, often using (cyclic) nucleotide signals. We discovered that flagellum de- and repolarization in the model prokaryote Caulobacter crescentus is precisely orchestrated through at least three spatiotemporal mechanisms integrated at TipF. We show that TipF is a cell cycle-regulated receptor for the second messenger--bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)--that perceives and transduces this signal through the degenerate c-di-GMP phosphodiesterase (EAL) domain to nucleate polar flagellum biogenesis. Once c-di-GMP levels rise at the G1 → S transition, TipF is activated, stabilized, and polarized, enabling the recruitment of downstream effectors, including flagellar switch proteins and the PflI positioning factor, at a preselected pole harboring the TipN landmark. These c-di-GMP-dependent events are coordinated with the onset of tipF transcription in early S phase and together enable the correct establishment and robust amplification of TipF-dependent polarization early in the cell cycle. Importantly, these mechanisms also govern the timely removal of TipF at cell division coincident with the drop in c-di-GMP levels, thereby resetting the flagellar polarization state in the next cell cycle after a preprogrammed period during which motility must be suspended.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Ciclo Celular/fisiologia , Flagelos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Polaridade Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência , Transdução de Sinais
19.
Cell Rep ; 4(5): 985-95, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23994470

RESUMO

In Escherichia coli, bidirectional chromosomal replication is accompanied by the colocalization of sister replication forks. However, the biological significance of this mechanism and the key factors involved are still largely unknown. In this study, we found that a protein, termed CrfC, helps sustain the colocalization of nascent DNA regions of sister replisomes and promote chromosome equipartitioning. CrfC formed homomultimers that bound to multiple molecules of the clamp, a replisome subunit that encircles DNA, and colocalized with nascent DNA regions in a clamp-binding-dependent manner in living cells. CrfC is a dynamin homolog; however, it lacks the typical membrane-binding moiety and instead possesses a clamp-binding motif. Given that clamps remain bound to DNA after Okazaki fragment synthesis, we suggest that CrfC sustains the colocalization of sister replication forks in a unique manner by linking together the clamp-loaded nascent DNA strands, thereby laying the basis for subsequent chromosome equipartitioning.


Assuntos
Cromossomos Bacterianos , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Dinaminas/metabolismo , Escherichia coli/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Segregação de Cromossomos , DNA Helicases/genética , Replicação do DNA/fisiologia , DNA Bacteriano/genética , Dinaminas/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Dados de Sequência Molecular , Transativadores/genética
20.
J Biol Chem ; 287(44): 37458-71, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22942281

RESUMO

In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli , Complexo de Reconhecimento de Origem/genética , Thermotoga maritima , Trifosfato de Adenosina/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pegada de DNA , Replicação do DNA , DNA Bacteriano/genética , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/química , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Complexo de Reconhecimento de Origem/química , Plasmídeos/genética , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...